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The Binomial Series of Isaac Newton 

 
 

In 1661, the nineteen-year-old Isaac Newton read the Arithmetica Infinitorum and 
was much impressed.  In 1664 and 1665 he made a series of annotations from Wallis 
which extended the concepts of interpolation and extrapolation.  It was here that 
Newton first developed his binomial expansions for negative and fractional exponents 
and these early papers of Newton are the primary source for our next discussion 
(Newton, 1967a, Vol. 1, p 89-142).  

Newton made a series of extensions of the ideas in Wallis.  He extended the 
tables of areas to the left to include negative powers and found new patterns upon 
which to base interpolations.  Perhaps his most significant deviation from Wallis was 
that Newton abandoned the use of ratios of areas and instead sought direct expressions 
which would calculate the area under a  portion of a curve from the value of the 
abscissa.   Using what he knew from Wallis he could write down area expressions for 
the integer powers.  Referring back to Figure 1, we have: 

Area under xn

Area of containing rectangle
=

1
n +1

, and 

Area of the containing rectangle = x ⋅ xn = xn+1 , hence 

Area under the curve xn = xn+1

n +1
 

Using this form combined with binomial expansions, Newton wrote down 
progressions of expressions which calculated the area under curves in particular 
families.  For example, he considered the positive and negative integer powers of 1+ x ,  
i.e. the series of curves : 

… , y =
1

1+ x
, y = 1, y = 1+ x, y = (1+ x)2 , y = (1+ x)3, y = (1+ x)4 , …  

He was particularly interested in the hyperbola and wanted to find its area 
expression by interpolation after having failed to obtain its area by purely geometric 
considerations (Newton, 1967a, Vol. 1, p 94). 

Newton drew the following graph of several members of this family of curves 
(Figure 4).  Appearing in the graph are a hyperbola, a constant, a line, and a parabola, 
i.e. the first four curves in the progression. 
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    Fig. 4  

Letting ck = cd = 1and de = x , the ordinates here are: eb = 1
1+ x

, ef = 1 , eg = 1+ x , 

and eh = (1+ x)2 .  He then wrote down a series of expressions which calculate the areas 
under the curves over the segment de = x  as: 

Area(afed) = x, Area(aged) = x + x2

2
, Area(ahed) = x + 2x

2

2
+
x3

3
. 

The third one is obtained by first expanding (1+ x)2  as 1+ 2x + x2  (see Appendix 
3).  Although the higher power curves did not appear in the graph, Newton went on to 
write down more area expressions for curves in this family.  For the positive integer 
powers  3, 4, and 5  of 1+ x   he obtained the following area expressions by first 
expanding and then finding the area term by term. 
 

third power: x +
3x2

2
+
3x3

3
+
x4

4
 

fourth power: x +
4x2

2
+
6x3

3
+
4x4

4
+
x5

5
 

fifth power: x +
5x2

2
+
10x3

3
+
10x4

4
+
5x5

5
+
x6

6
 

At this point Newton wanted to find a pattern which would allow him to extend 
his calculations to include the areas under the negative powers of 1+ x .  He noticed that 
the denominators form an arithmetic sequence while the numerators follow the 
binomial patterns.  This binomial pattern in the numerators is not so surprising, given 
that they came from expansions.  He then made the following table of the area 
expressions for (1+ x)p  (see Table 4), where each column represents the numbers in the 
numerators of the area function.  The question then becomes: how can one fill in the 
missing entries?  He began by assuming that the top row remains constant at the value 
1. 
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     Table 4  
     p 
 
term 

-4 -3 -2 -1  0  1  2  3  4  5  6 

x
1

 
 1  1  1  1  1  1  1  1  1  1  1 

x2

2
 

    ?  0  1  2  3  4  5  6 

x3

3
 

     0  0  1  3  6  10  15 

x4

4
 

     0  0  0  1  4  10   20 
 

x5

5
 

     0  0  0  0  1  5  15 

x6

6
 

     0  0  0  0  0  1  6 

x7

7
 

     0  0  0  0  0  0  1 

 
This binomial table is different from Wallis' table in that the rows are all nudged 

successively to the right so that the diagonals of the Wallis table become the columns of 
Newton's table.  The binomial pattern of formation is now such that each entry is the 
sum of the entry to the left of it and the one above that one.  Using this rule backwards 
as a difference we find, for example, that the  ?  must be equal to -1.  Each new diagonal 
to the left is the sequence of differences of the previous diagonal.  This was Newton's 
first use of difference tables. Continuing on in a similar manner Newton filled in the 
table of coefficients for the area expressions under the curves (1+ x)p  as follows:
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     Table 5  
     p 
 
term 

-4 -3 -2 -1 0 1 2 3 4 5 6 

x
1

 1 1 1 1 1 1 1 1 1 1 1 

x2

2
 -4 -3 -2 -1 0 1 2 3 4 5 6 

x3

3
 10 6 3 1 0 0 1 3 6 10 15 

x4

4
 -20 -10 -4 -1 0 0 0 1 4 10 20 

x5

5
 35 15 5 1 0 0 0 0 1 5 15 

x6

6
 -56 -21 -6 -1 0 0 0 0 0 1 6 

x7

7
 84 28 7 1 0 0 0 0 0 0 1 

  

At this point Newton could write down the area under the hyperbola: y = 1
1+ x

,  

(i.e. what we now call the natural logarithm of 1+ x ) (see Figure 4) as: 
 

(6)  Area(abed) = x − x2

2
+
x3

3
−
x4

4
+
x5

5
−
x6

6
+
x7

7
…  

 
He then made several detailed calculations using the first 25 terms of this series to 
compute hyperbolic areas to more than 50 decimal places.  Newton later became aware 
that this function displayed logarithmic properties and could be used to create a table of 
common logarithms (Edwards, 1979, p. 160). 

Newton repeatedly returned to the table of characteristic ratios made by Wallis 
(Table 3).  As discussed previously, Newton abandoned Wallis' use of area ratios and 
set out to make a table of coefficients for a sequence of explicit expressions for 
calculating areas. He used the same set of curves whose characteristic ratios Wallis had 
tabulated in the row q=1/2, but Newton let r=1 (in the circle case r is the radius). Hence 
he considered the areas (over the segment de=x) under the following sequence of 
curves (see Figure 5): 

… , y = 1, y = 1− x2 , y = 1− x2 , y = (1− x2 ) 1− x2 , y = (1− x2 )2 , …  
  
These are the powers of 1− x2  at intervals of 1/2.  In this early manuscript Newton did 
not write fractions directly as exponents, but when he later announced the results of his 
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researches in a series of letters he did, thus y = (1− x2 ) 1− x2 would become 
y = (1− x2 )3/2 .  Several times Newton drew graphs of these curves inside the unit square 
(see Figure 5).  (Newton's original manuscript containing one of these graphs is 
included with this paper.) 

 
Fig. 5 

 
He let ad = dc = 1  and de = x  ;  ef , eb, eg, eh, ei, en,…  are then the ordinates of his 

series of curves respectively.  Note that the curve abc is a circle, and agc  is a parabola. 

  For the integer powers of  1− x2 , Newton could write down the areas in his 
graph (Figure 5) as: 

Area(afed) = x, Area(aged) = x − 1
2
x3, Area(aied) = x − 2

3
x3 +

1
5
x5  

As before, these are obtained by first expanding the binomials and then writing down 
the area expressions term by term.  Once again he applied the characteristic ratios of 
Wallis to each separate term in the expansion (see Appendix 3).  Although the higher 
powers no longer appeared in his graph, Newton continued this sequence of area 
expressions for (1− x2 )p  as follows: 

p = 3 :  x −
3
3
x3 +

3
5
x5 −

1
7
x7  

p = 4 : x −
4
3
x3 +

6
5
x5 −

4
7
x7 +

1
9
x9  

p = 5 : x −
5
3
x3 +

10
5
x5 −

10
7
x7 +

5
9
x9 −

1
11
x11  

 etc. 
Once again he saw that the denominators formed an arithmetic sequence and that the 
numerators followed a binomial pattern.  As before Newton made a table of these 
results including an extension into the negative powers.  Table 6 is a table of coefficients 
of the expressions which compute the area under the curves y = (1− x2 )p .
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     Table 6 
     p 
 
term 

-1 −
1
2

 0 
1
2

 1 
3
2

 2 
5
2

 3 
7
2

 4 

x
1

 1  1  1  1  1  1 

−
x3

3
 -1  0  1  2  3  4 

x5

5
 1  0  0  1  3  6 

−
x7

7
 -1  0  0  0  1  4 

x9

9
 1  0  0  0  0  1 

−
x11

11
 -1  0  0  0  0  0 

x13

13
 1  0  0  0  0  0 

  
It now remained to find a way to interpolate the missing entries for the fractional 

powers.  In this table each entry is the sum of the entry two spaces to the left and the 
entry directly above that one.  The entries above the diagonal of 1's had already been 
interpolated by Wallis in Table 3, and from these one could complete the table by 
differences as in Table 5.  One could also have used the polynomials that appeared in 
the margins of Wallis' Table 3 to fill in this table.  Newton, however, devised his own 
system of interpolation which he could check against these others.  Instead of forming 
polynomial expressions for the interpolation of each row, Newton used the known 
entries to generate a system of linear equations whose solution would determine the 
missing entries.   

He first noted that integer binomial tables obey the following additive pattern of 
formation (Table 7).
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     Table 7  
a a a a a 
b a+b 2a+b 3a+b 4a+b 
c b+c a+2b+c 3a+3b+c 6a+4b+c 
d c+d b+2c+d a+3b+3c+d 4a+6b+4c+d 
e d+e c+2d+e b+3c+3d+e a+4b+4c+4d+e 
 

This pattern is formed by starting with a constant sequence (a,a,a,...) and an 
arbitrary left hand column (a,b,c,d,...); and then forming each entry as the sum of the 
one to the left and the one above that.  This, as it stands, would not work for the 
completion of the fractional interpolated tables, because the entries in the top row must 
all be 1 in all the interpolated tables (i.e. a=1), but this would force the increment of the 
second row also to be one.  To get around this difficulty, Newton rewrote this pattern so 
as to unlink the rows of Table 7.  That is to say, he preserved the pattern within each 
individual row but he changed the names of the variables so that each variable 
appeared in only one row.  As you move down the rows each new row can be described 
using successively one more variable.   Changing the names of variables so that each 
row is independent of the others, the pattern now becomes Table 8. 
        
     Table 8 
a a a a a 
b c+b 2c+b 3c+b 4c+b 
d e+d f+2e+d 3f+3e+d 6f+4e+d 
g h+g i+2g+h k+3i+3h+g 4k+6i+4h+g 
l m+l n+2m+l p+3n+3m+l q+4p+6n+6m+l 
  

Using Table 8, if any entry in the first row is known the whole row is known.  If 
any two entries in the second row are known then one can solve for b and c and fill in 
the entire row.  If any three entries in the third row are known one can solve for d, e and 
f and fill in the entire row.  Thus with a sufficient number of known values in a given 
row one could solve a system of linear equations for all the variables in that row.  
Newton solved sets of linear equations to find these values and that allowed him to fill 
in the interpolated table.  This method allowed him not only to interpolate the binomial 
table at increments of 1/2, but at any increment, for example, thirds.   

He then completed Table 6.  Let us complete the third row, for example, using 
the known values 0, ?, 0, ?, 1, ?   We obtain d=0,  f+2e+d=0, and  6f+4e+d=1.  Thus d=0,  

f = 1
4

, and e = −
1
8

.  We can now complete the entire row using these values, but it 

should be noted here that although we used three equations to find d, e, and f there are 
actually an infinite number of equations involving these three variables. One might ask 
if this set of equations is consistent.  They are, but Newton did not address this issue.  
He is satisfied because the values he finds agree with Wallis and with the additive 
pattern of table formation.  With the completion of Table 6, Newton will also obtain a 
new way to calculate π which will validate his method in a geometric representation.  
Table 6 now becomes:  
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     Table 9    
p 
 
term 

-1 −
1
2

 0 
1
2

 1 
3
2

 2 
5
2

 3 
7
2

 4 

x
1

 1 1 1 1 1 1 1 1 1 1 1 

−x3

3
 -1 

−1
2

 0 
1
2

 1 
3
2

 2 
5
2

 3 
7
2

 4 

x5

5
 1 

3
8

 0 
−1
8

 0 
3
8

 1 
15
8

 3 
35
8

 6 

−x7

7
 -1 

−5
16

 0 
3
48

 0 
−1
16

 0 
5
16

 1 
35
16

 4 

x9

9
 1 

35
128

 0 
−15
384

 0 
3
128

 0 
−5
128

 0 
35
128

 1 

−x11

11
 -1 

−63
256

 0 
105
3840

 0 
−3
256

 0 
3
256

 0 
−7
256

 0 

x13

13
 1 

231
1024

 0 
−945
46080

 0 
7

1024
 0 

−5
1024

 0 
7

1024
 0 

  
 

The column p = 1
2

 gives an infinite series which calculates the area under any 

portion of a circle (see Figure 5).  That is to say, that Area(abed)  is given by (7), where 
de = x . 
 

(7) x −
1
2
x3

3
−
1
8
x5

5
−
3
48

x7

7
−
15
384

x9

9
−
105
3840

x11

11
−…  

 
Letting x = 1  in this series calculates the area of one quarter of the circle and thus  yields 
a new calculation of π: 
 

(8) 
π
4
= 1− 1

6
−
1
40

−
1
112

−
5

1152
−

7
2816

−…  

 
Checking that this series does agree with the value of π obtained from geometrical 
arguments like those of Archimedes, as well as the infinite product of Wallis; provided 
Newton with a validation of this interpolation in alternate representations.  

Newton later became aware that the interpolation procedure based on the 
patterns of Table 8 was equivalent to the assumption that rows of this table could be 
interpolated using polynomial equations of increasing degree.  That is to say, the first 
row is constant, the second row is linear, the third row is quadratic, and so on.  This is 
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consistent with the method used by Wallis, and would suggest to Newton a general 
procedure for the interpolation of data which we will describe in the next section.  
 

 
Fig. 6 

 
Newton also pointed out that this series allowed him to compute arcsin(x) .  By 

adding a line from d  to b in Figure 5 (see Figure 6), and subtracting the area of Δdbe  
from Area(abed) , one obtains the area of the circular sector (abd) .  Since this is the circle 
of radius one, twice the area of sector(abd)  equals arclength(ab)  (when r=1, area=π, and 
circumference=2π).  The triangle (dbe)  to be subtracted from the series has area equal to 
1
2
x 1− x2 . 

  Satisfied with his interpolation methods Newton began searching for a pattern 
in the columns of his table which would allow him to continue each series without 
having to repeat his tedious interpolation procedure row by row.  Note that some of the 
fractions in Table 9 are not reduced.  In earlier tabulations Newton did reduce the 
fractions but he soon became aware that this would only obscure any possible patterns 
in their formations.  Following the example set by Wallis, he sought a pattern of 
continued multiplication of arithmetic sequences.  Since the circle was so important to 

him he studied the p = 1
2

 column first.  Factoring the numbers in these fractions he 

found that they could be produced by continued multiplication as: 
 

(9)  
1
1
⋅
1
2
⋅
−1
4
⋅
−3
6
⋅
−5
8

⋅
−7
10

⋅
−9
12

⋅
−11
14

⋅…  

Similarly, the entries in the p =
3
2

 column could be produced by continued multiplication as: 

 

 (10)  
1
1
⋅
3
2
⋅
1
4
⋅
−1
6
⋅
−3
8
⋅
−5
10

⋅
−7
12

⋅
−9
14

⋅…  
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In order to further investigate these patterns, Newton carried out an 
interpolation of the binomial table at intervals of 1/3.  Using the patterns from Table 8 
and solving the systems of equations for the variables in each row he produced the 
following interpolated Table 10.  Note that at this point he does not write down the 
terms in the expansions for which these numbers are coefficients.  Newton never 
mentions an explicit context of area calculations for which Table 10 was intended.  At 
this point he is working solely within a table representation in order to find an explicit 
formula for the fractional binomial numbers whose patterns began revealing 
themselves in (9) and (10).  After another long round of solving systems of linear 
equations, Newton arrived at: 
 
     Table 10 

0 
1
3

 
2
3

 1 
4
3

 
5
3

 2 
7
3

 
8
3

 3 
10
3

 

1 
 1 1 1 1 1 1 1 1 1 1 

0 
1
3

 
2
3

 1 
4
3

 
5
3

 2 
7
3

 
8
3

 3 
10
3

 

0 
−1
9

 
−1
9

 0 
2
9

 
5
9

 1 
14
9

 
20
9

 3 
35
9

 

0 
5
81

 
4
81

 0 
−4
81

 
−5
81

 0 
14
81

 
40
81

 1 
140
81

 

0 
 

−10
243

 
−7
243

 0 
5
243

 
5
243

 0 
−7
243

 
−10
243

 0 
25
243

 

0 
 

22
729

 
14
729

 0 
−8
729

 
−7
729

 0 
7
729

 
8
729

 0 
−14
729

 

 
Searching, as before, for a pattern of repeated multiplication of arithmetic 

sequences that would generate the columns of this table, Newton discerned the 

following pattern for the column p = 1
3

. 

 

(11)  
1
1
⋅
1
3
⋅
−2
6

⋅
−5
9

⋅
−8
12

⋅
−11
15

⋅
−14
18

⋅
−17
21

⋅… 

  
Here the sequence of numerators and denominators both change by increments of 3 
(ignoring the first term), the former going down while the later go up.  In (9) and (10) 
the same thing happened but by increments of 2.  At this point Newton wrote down an 

explicit formula for the binomial numbers in an arbitrary column p = x
y

. 

 

(12)  
1
1
⋅
x
y
⋅
x − y
2y

⋅
x − 2y
3y

⋅
x − 3y
4y

⋅
x − 4y
5y

⋅
x − 5y
6y

⋅… 
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This formula makes perfect sense given the form of the examples from which it 
was constructed.  If the y's in the denominators are taken into the numerators it 
becomes the formula for the binomial coefficient that is familiar to a modern reader.  

Dropping the first term and letting n = x
y

, as Newton would do in his later letters, (12) 

becomes: 
 

(13)  
n
1
⋅
n −1
2

⋅
n − 2
3

⋅
n − 3
4

⋅
n − 4
5

⋅
n − 5
6

⋅…  

 
The binomial series became the engine which generated a wealth of examples 

from which Newton would later build his version of calculus.  Once he had written 
down (12) and later (13), he began a long series of experiments and checks to convince 
himself of its validity. For example, by using synthetic division one can write:  

1
1+ x

= 1− x + x2 − x3 + x4 − x5 + x6 − x7 +…  

By computing the area of this series term by term one could then arrive at the series for 
hyperbolic areas (6).  It is important to note here that this is not how Newton first 
constructed (6). (Several history books give that impression, as does one of Newton's 
own accounts).  He noticed this later and saw it as an important algebraic confirmation 
of the validity of his table construction.  Thus his extension of the binomial table could 
be checked against both geometric areas, and algebraic generalizations of arithmetic.   

 His original interpolations were designed to calculate areas under families of 
curves but Newton soon saw that by changing the terms to which the coefficients were 
applied he could use these numbers to calculate the points on the curve as well.  This 
was particularly useful for root extractions.  He simply had to replace the area terms  
xn+1

n +1
 with the original terms xn  from which they came.  The coefficients in the tables 

remain the same.  For example, the p = 1
2

 column of Table 9 can be used to calculate 

square roots as: 
 

(14) (1− x2 )1/2 = 1− 1
2
x2 −

1
8
x4 −

1
16

x6 −
1
128

x8 −…  

 

(15) (1− x)1/2 = 1− 1
2
x −

1
8
x2 −

1
16

x3 −
1
128

x4 −…  

 

The p = 1
3

 column of Table 10 can be used to calculate cube roots as: 

 

(16) (1− x2 )1/3 = 1− 1
3
x2 −

1
9
x4 −

5
81
x6 −

10
243

x8 −…  
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(17)  (1+ x)1/3 = 1+ 1
3
x −

1
9
x2 +

5
81
x3 −

10
243

x4 −…  

 
These series appear in this form in the letters (1676) to Oldenburg in which 

Newton explained his binomial series at the request of Leibniz (Callinger, 1982; Struik, 
1986).  He checked the consistency of these series in many ways.  Various geometric 
methods for finding square roots were known against which (14) and (15) could be 
checked.  The series (15) can be multiplied by itself term by term to arrive at 1+x , all 
other terms canceling out.  Newton never gave anything like a formal proof of the 
validity of these generalized binomial expansions.  His approach was always empirical.  
He tried them in various contexts and they worked.  If certain values were needed for 
which a particular series diverged, he just rewrote it in another form until he found one 
that converged.  Questions concerning convergence were treated empirically for over a 
century after Newton.  As we shall see in the next discussion, Newton did not 
distinguish between the interpolation of scientific data and the continuous calculation 
of mathematically defined curves. 
 
 
References cited in the text can be found at 
http://www.quadrivium.info/MathInt/Notes/WallisNewtonRefs.pdf 
 


