
René Descartes' Curve-Drawing Devices: 
Experiments in the Relations Between Mechanical 

Motion and Symbolic Language 
 

David Dennis 
Published in Mathematics Magazine, Vol. 70, No. 3, June 1997,  

pp. 163-174.  Washington D. C.: Mathematical Association of America.  

Introduction1 

 By the beginning of the seventeenth century it had become possible to represent 

a wide variety of arithmetic concepts and relationships in the newly evolved language 

of symbolic algebra [19].  Geometry, however, held a preeminent position as an older 

and far more trusted form of mathematics.  Throughout the scientific revolution 

geometry continued to be thought of as the primary and most reliable form of 

mathematics, but a continuing series of investigations took place which examined the 

extent to which algebra and geometry might be compatible.  These experiments in 

compatibility were quite opposite from most of the ancient classics.  Euclid, for 

example, describes in Book 8-10 of the Elements a number of important theorems of 

numbers theory cloaked awkwardly in a geometrical representation [16].2  The 

experiments of the seventeenth century, conversely, probed the possibilities of 

representing geometrical concepts and constructions in the language of symbolic 

algebra.  To what extent could it be done?  Would contradictions emerge if one moved 

freely back and forth between geometric and algebraic representations? 

 Questions of appropriate forms of representation dominated the intellectual 

activities of seventeenth century Europe not just in science and mathematics but 

perhaps even more pervasively in religious, political, legal, and philosophical 

                                                 
1  This research was funded by a grant from the National Science Foundation. 
2  See, for example, Book 10, Lemma 1 before Prop. 29, where Euclid generates all 
Pythagorean triples geometrically even though he violates the dimensional integrity of 
his argument.  Areas, in the form of "similar plane numbers," are multiplied by areas to 
yield areas.  There seems to be no way to reconcile dimension and still obtain the result. 
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discussions [13, 24, 25].  Seen in the context of this social history it is not surprising that 

mathematicians like René Descartes and G. W. von Leibniz would have seen their new 

symbolic mathematical representations in the context of their extensive philosophical 

works.  Descartes' Geometry was originally published as an appendix to his larger 

philosophical work, the Discourse on Method.  Conversely, political thinkers like Thomas 

Hobbes commented extensively and on the latest developments in physics and 

mathematics [25, 4].  Questions of the appropriate forms of scientific symbolism and 

discourse were seen as closely connected to questions about the construction of the new 

apparatuses of the modern state.  This is particularly evident, for example, in the work 

of the physicist, Robert Boyle [25]. 

 This paper will investigate in detail two of the curve drawing constructions from 

the Geometry of Descartes [11] in such a way as to highlight the issue of the coordination 

of multiple representations [6].  The profound impact of Descartes' mathematics was 

rooted in the bold and fluid ways in which he shifted between geometrical and 

algebraic forms of representation, demonstrating the compatibility of these seemingly 

separate forms of expression.  Descartes is touted to students today as the originator of 

analytic geometry but nowhere in the Geometry did he ever graph an equation.  Curves 

were constructed from geometrical actions, many of which were pictured as mechanical 

apparatuses.  After curves had been drawn Descartes introduced coordinates and then 

analyzed the curve-drawing actions in order to arrive at an equation that represented 

the curve.  Equations did not create curves; curves gave rise to equations.3  Descartes 

used equations to create a taxonomy of curves [20].  

 It can be very difficult for a person well schooled in modern mathematics to enter 

into and appreciate the philosophical and linguistic issues involved in seventeenth 

century mathematics and science.  We have all been thoroughly trained in algebra and 
                                                 
3  Descartes' contemporary, Fermat, did begin graphing equations but his work did not 
have nearly the philosophical or scientific impact of Descartes'.  Fermat's original 
problematic contexts came from financial work rather than engineering and mechanics. 
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calculus and have come to rely on this language and grammar as a dominant form of 

mathematical representation.  We inherently trust that these symbolic manipulations 

will always give results which are compatible with geometry; a trust that did not fully 

emerge in mathematics until the early works of Euler more than a century after 

Descartes.  Such trust became possible because of an extensive set of representational 

experiments conducted throughout the seventeenth century which tested the ability of 

symbolic algebraic language to faithfully represent geometry [5, 7].  Descartes' Geometry 

is one of the earliest and most notable of these linguistic experiments.  Because of our 

cultural trust in the reliability of symbolic languages applied to geometry, many of 

those schooled in mathematics today have learned comparatively little about geometry 

in its own right.   

 Descartes wrote for an audience with opposite predispositions.  He assumed that 

his readers were thoroughly acquainted with geometry, in particular the works of 

Apollonius on conic sections from ~200 BC [2, 15].  In order to appreciate the 

accomplishments of Descartes one must be able to check back and forth between 

representations and see that the results of symbolic algebraic manipulations are 

consistent with independently established geometrical results.  The seventeenth century 

witnessed an increasingly subtle and persuasive series of such critical linguistic 

experiments in the work of Roberval, Cavalieri, Pascal, Wallis, and Newton [8, 9].  

These led eventually to Leibniz's creation of a general symbolic language capable of 

fully representing all known geometry of his day, that being his "calculus" [5, 7]. 

 Since many of the most simple and beautiful results of Apollonius are scarcely 

known to modern mathematicians, it can be difficult to recreate one essential element of 

the linguistic achievements of Descartes, that being the checking of algebraic 

manipulations against independently established geometrical results.  In this paper I 

will ask the reader to become a kind of intellectual Merlin and live history backwards.  

After we explore one of Descartes curve-drawing devices, the resultant bridge between 
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geometry, and algebra will be used to regain a compelling result from Apollonius 

concerning hyperbolic tangents.  The reader can than choose to regard the contents of 

this investigation as a philosophical demonstration of the consistency between algebra 

and geometry, or as a simple analytical demonstration of a powerful ancient result of 

Apollonius.  By adopting both views one gains a fully flexible cognitive feedback loop 

of the sort that I and my students have found most enlightening [6].  

 I was recently discussing my work on the history of curve drawing devices and 

their possible educational implications with a friend.  His initial reaction was, "Surely 

you don't advocate the revival of geometrical methods; progress in mathematics has 

been made only to the extent to which geometry has been eliminated."  This claim has 

historical validity especially since the eighteenth century, but my response was that 

such progress was only possible once mathematicians had achieved a basic faith in the 

ability of algebraic language to represent and model geometry accurately.  I argued that 

one cannot appreciate the profundity of calculus unless one is aware of the issue of 

coordination of multiple independent representations.  Many students seem to learn 

and even master the manipulations of calculus without ever having questioned or 

tested the language's ability to model geometry precisely.  Even Leibniz, no lover of 

geometry, would feel that such a student has bypassed the main point of his symbolic 

achievement [5].  My friend and I reached agreement on this issue. 

 Descartes' curve-drawing devices poignantly raise the issue of technology and its 

relation to mathematical investigation.  During the seventeenth century there was a 

distinct turning away from the classical Greek orientation that had been popular during 

the Renaissance in favor of pragmatic and stoic Roman philosophy.  During much of the 

seventeenth century a class in "Geometry" would concern itself mainly with the design 

of fortifications, siege engines, canals, water systems, and hoisting devices. i.e., what we 

would call civil and mechanical engineering.  Descartes' Geometry was not about static 

constructions and axiomatic proofs, but instead concerned itself with mechanical 
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motions and their possible representation in algebraic equations.  Classical problems 

were addressed but they are all transformed into locus problems, through the use of a 

wide variety of motions and devices that went far beyond the classical restriction to 

straightedge and compass.  Descartes sought to build a geometry that included all 

curves whose construction he considered to be "clear and distinct" [11, 20].  An 

examination of his work shows that what he meant by this was any curve that could be 

drawn with a linkage (i.e. a device made of hinged rigid rods).  Descartes' work 

indicates that he was well aware that this class of curves is exactly the class of all 

algebraic curves although he gave no formal proof of this.  This theorem is scarcely 

known among modern mathematicians although it can be proved straight-forwardly by 

looking at linkages that add, subtract, multiply, divide and generate integer powers [3].  

Descartes' linkage for generating any integer power was used repeatedly in the 

Geometry and has many interesting possibilities [10]. 

 This transformation of geometry from classical static constructions to problems 

involving motions and their resultant loci has once again raised itself in light of modern 

computer technology, specifically the advent of dynamic geometry software like Cabri, 

and Geometer's Sketchpad.  An abundance of new educational and research possibilities 

have emerged recently in response to these technological developments [26].  It seems 

that seventeenth century mechanical geometry may yet rise from the ashes of history 

and regain a new electronic life in our mathematics classrooms.  It has always had a life 

in our schools of engineering where the finding of equations that model motion has 

always been a fundamental concern.  My own explorations of seventeenth century 

dynamic geometry have been conducted with a combination of physical models and 

devices combined with computer animations made in the software Geometer's Sketchpad 

[18].  The first figure in this paper is taken directly from Descartes while all of the others 

were made using Geometer's Sketchpad.  This software allows for a more authentic 

historical exploration since curves are being generated from geometrical actions rather 
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than as the graphs of equations.  Static figures in print cannot vividly convey the sense 

of motion that is necessary for a complete understanding of these devices.4  In the 

generation of the figures in this paper no equations were typed into the computer.   

 

Descartes' Hyperbolic Device         

    
Figure 1: Descartes' Hyperbolic Device  

 

 Figure 1 is reproduced from the original 1637 edition of Descartes' Geometry  [11, 

p. 50].  Descartes described this curve drawing device as follows: 

Suppose the curve EC to be described by the intersection of the ruler GL and 

the rectilinear plane figure NKL, whose side KN is produced indefinitely in the 

direction of C, and which, being moved in the same plane in such a way that its 

diameter KL always coincides with some part of the line BA (produced in both 

directions), imparts to the ruler GL a rotary motion about G (the ruler being 

hinged to the figure NKL at L).  If I wish to find out to what class this curve 

belongs, I choose a straight line, as AB, to which to refer all its points, and on 
                                                 
4  Animated figures made in Geometer's Sketchpad are available from the author by e-
mail. 
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AB  I choose a point A at which to begin the investigation.  I say "choose this 

and that," because we are free to choose what we will, for, while it is necessary 

to use care in the choice, in order to make the equation as short and simple as 

possible, yet no matter what line I should take instead of AB the curve would 

always prove to be of the same class, a fact easily demonstrated.   [11, p. 51] 

    

 Descartes addressed here several of his main points concerning the relations 

between geometrical actions and their symbolic representations.  His "classes of curves" 

refer to the use of algebraic degrees to create a taxonomy of curves.  He is asserting that 

the algebraic degree of an equation representing a curve is independent of how one 

chooses to impose a coordinate system.  Scale, starting point and even the angle 

between axes will not change the degree of the equation, although this "fact easily 

demonstrated" is never given anything like a formal proof in the Geometry.  Descartes 

also mentioned here the issue of a judicious choice of coordinates, an important 

scientific issue that goes largely unaddressed in modern mathematics curriculum until 

an advanced level, at which point geometry is scarcely mentioned.   

 Descartes went on to find the equation of the curve in Figure 1 as follows.  

Introduce the variables (Descartes used the term "unknown and indeterminate 

quantities") AB = y, BC = x, (i.e. in modern notation C = (x,y)), and then the constants 

("known quantities") GA = a, KL = b, and NL = c.  Descartes routinely used the lower 

case letters x, y, and z as variables, and a, b, and c as constants, and our modern 

convention stems from his usage.  Descartes, however, had no convention about which 

variable was used horizontally, or in which direction (right or left) a variable was being 

measured (x is measured to the left here).  There was, in general, no demand that x and 

y be measured at right angles to each other.  The variables were tailored to the 

geometric situation.  There was a very hesitant use of negative values (often called "false 

roots"), and in most geometric situations they were avoided.      
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 Continuing with the derivation, since the triangles KLN and KBC are similar, we 

have   cb   =  x
BK   ,  hence  BK =  bc  x ,  hence BL =  bc  x – b .  From this it follows that  

 AL = y + BL = y + bc  x – b .  Since triangles LBC, and LAG are similar, we have BC
BL   = 

AG
AL   .   This implies the following chain of equations. 
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   x
b
c x–b

   =  a

y + bc x–b
   

   

  x ( y + bc  x – b ) = a ( bc  x – b ) 

 

  xy + bc  x2 – bx = ab
c   x – ab 

 

       x2 = cx –  cb  xy + ax – ac       (1)  

Descartes left the equation in this form because he wished to emphasize its second 

degree.  He concluded that the curve is a hyperbola.  How does this follow?  As we said 

before Descartes assumed that his readers were well acquainted with Apollonius.  We 

will return to this issue shortly.   

 If one continues to let the triangle NLK rise along the vertical line, and keeps 

tracing the locus of the intersection of GL with NK, the lines will eventually become 

parallel (see Figure 2), and after that the other branch of the hyperbola will appear (see 

Figure 3). 
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Figure 2: Descartes' Device in the Asymptotic Position 

   

   These figures were made with Geometer's Sketchpad,  although I have altered 

slightly the values of the constants a, b, and c  from those in Figure 1.  In Figure 2, the 

line KN is in the asymptotic position (i.e., parallel to GL).  I will hereafter refer to this 

particular position of the point K, as point O.  In this position triangles NLK, and GAL 

are similar, hence the length of AK = AO =  ab
c   + b  (the y-intercept of the asymptote).  

The slope of the asymptote is the same as the fixed slope of KN, i.e.,  b/c (recall that KL = 

b, 

 NL = c, and GA = a). 

 To rewrite Equation 1 using A as the origin in the conventional modern sense, 

with x measured positively to the right, one must substitute –x for x .  Making this 

substitution and solving Equation 1 for  y one obtains the following equation. 

 

           y = ab 1x   +  bc  x +  ( ab
c   + b)      (2)  
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Figure 3:  Geometrical Display of the Terms in the Hyperbolic Equation 

 

 One sees in Equation 2 that the linear equation of the asymptote appears as the 

last two terms of the equation.   In Figure 3, I have shown, to the right, the lengths that 

represent respectively the values of the three terms in Equation 2,  for the point P (1-

inverse term, 2-linear term, 3-constant term).  Term 3 accounts for the rise from the x-

axis to the level of point O (the intercept of the asymptote).  Adding term 2, raises one to 

the level of the asymptote, and term 1 completes the ordinate to the curve. 

 As a geometric construction, the hyperbola is drawn from parameters which 

specify the angle between the asymptotes (angle NKL), and a point on the curve (G).  If 

one changes the position of the point N without changing the angle NKL, the curve is 

unaffected as in Figure 4.  The derivation of the equation depends only on similarity, 

and not on having perpendicular coordinates.  As long as GA (which determines the 
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coordinate system) is parallel to NL, the derivation of the equation is the same except 

for the values of the constants NL = c, and GA = a (which have both become larger in 

Figure 4).  Of course this equation is in the oblique coordinate system of the lines GA (x-

axis) and AK (y-axis).  It is the same curve geometrically, with the same form of 

equation, but with new constant values that refer to an oblique coordinate system.  As 

long as angle NKL remains the same, and G is taken at the same distance from the line 

KL, the device will draw the same curve.  This form of a hyperbolic equation, as an 

inverse term plus linear terms, depends only on using at least one of the asymptotes as 

an axis.     

            

    
Figure 4: Hyperbola in Skewed Coordinates  

       

 I have encountered many students over the years who are well acquainted with 

the function y = 1x  , and yet are entirely unaware that its graph is an hyperbola.  
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Descartes' construction can be adjusted to draw right hyperbolas.  Consider the special 

case when the line KN is parallel to the x-axis (see Figure 5).  The point G is on the 

negative x-axis.  Let KC = x, and AK = y (i.e. C = (x,y)) , AG = a, and KL = b.  Now AL = 

y–b, and since triangles LKC, and LAG are similar, we have  KC
KL   =  AG

AL   , or, 

equivalently,  xb   =  a
y–b   .  Hence the curve has the following equation. 

 

      y = ab 1x  + b       (3)  

A vertical translation by b would move the origin to the point O, and letting a = b = 1, 

would put G at the vertex (-1,-1), yielding a curve with an equation of y = 1/x. 

 

       
Figure 5:  Device Adjusted to Draw Right Hyperbolas 

 

 Equation 3 can be seen as a special case of Equation 2, obtained by substituting  

∞  for c, where c is thought of as the horizontal distance from L to the line KN.  In this 
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case the linear term disappears.  All translations and rescalings of the multiplicative 

inverse function can be directly seen as special members of the family of hyperbolas, via 

this construction. 

 

Apollonius Regained 

 One might ask how we know that these curves are in fact hyperbolas.  Descartes 

said that this is implied by Equation 1.  In his commentaries on Descartes, van Schooten 

gives us more detail [11, p. 55, note 86].  Once again these mathematicians assumed that 

their readers were familiar with a variety of ratio properties from Book 2 of the Conics of 

Apollonius [2, 15] that are equivalent to Equation 1.  I will not give a full set of proofs, 

but instead suggest means for exploring these relations.   

 Several of the theorems of Apollonius concerning the relations between tangents 

and asymptotes are beautiful, and easily explored in this setting.  Using the asymptotes 

of the curve in Figure 5 as edges to define rectangles, one sees that the points on the 

curve define a family of rectangles which all have the same area (see Figure 6).  Letting 

M and N be any two points on the curve, Equation 3 implies that the areas of  OPMS 

and OQNR are both equal to  a.b, the product of the constants used in the drawing of the 

curve.  Another geometric property of interest is that the triangles TSM and NQU are 

always congruent.  This congruence provides one way to dissect and compare these 

rectangles in a geometric way [17].  
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Figure 6:  Hyperbola as a Family of Equal Area Rectangles 

 

   Approaching these questions analytically, assume that the curve in Figure 6 has 

the equation x. y = k (using O as the origin).  Let M = (m, k/m) and N = (n, k/n), i.e. OP = 

m and OQ = n.  Writing the equation of the line through M and N, one obtains   

y = –k
mn   x + ( k

m  + kn  ).   Hence TO = k
m  + kn  , and since SO = k

m  , this implies that  

TS = kn   = NQ.  Since triangles TSM and NQU are clearly similar, TS=NQ implies that 

they are congruent and that TM = NU.  Now let the points M and N get close to each 

other.  The line MN then gets close to a tangent line, and one can perceive a theorem of 

Apollonius:  

Given any tangent line to a hyperbola, the segment of the tangent contained 

between the two asymptotes is always bisected by the point of tangency to the 

curve  [2, 15]. 

This property is a defining characteristic of hyperbolas.  This simple and beautiful 

theorem immediately implies, for example, that the derivative of  1x    is  -1
 x2   , by simply 

looking at the congruent triangles and computing the rise over run for the tangent.  This 

gives a student an independent geometrical check on the validity of the calculus 

derivation. 
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 This bisection property of hyperbolic tangents is not restricted to the right 

hyperbola.  Looking back at Figure 3, and Equation 2, one sees that any hyperbola 

coordinatized along both its asymptotes will always have an equation of the form x. y = 

k for some constant k.  To see this, subtract off the linear and constant terms from the y-

coordinate, and then rescale the x-coordinates by a constant factor that projects them in 

the asymptotic direction (i.e., in Figure 7 the new x-coordinate in this skew system is 

OQ).  In the general case the curve can be seen as the set of corners of a family of equi-

angular parallelograms which all have the same area.  In Figure 7, for any two points on 

the curve, M and N, the parallelograms (OQNR and OPMS) have equal areas.  Since the 

triangles TSM and NQU are congruent, by letting M and N get close together one sees 

that any tangent segment TU is bisected by the point of tangency (M or N).   
 

 
Figure 7:  Bisection Property of Hyperbolic Tangents 

 

 An alternative view of the situations just described is to imagine any line parallel 

to TU meeting the asymptotes and the curve in corresponding points T', M', and U'.  

Then the product T'M' x M' U' = TM x MU.  That is to say, parallel chords between the 

asymptotes of a hyperbola are divided by the curve into pieces with a constant product.  

This follows from our discussion, because the pieces are constant projections of the 
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sides of the parallelograms just discussed.   It is this form of the statement that was most 

often used by van Schooten, Newton, Euler and others in the seventeenth century.  This 

statement (from Book 2 of Apollonius [2, 15]) was traditionally used as an identifying 

property of hyperbolas.  This constant product was given as a proof by van Schooten 

that the curve drawn by Descartes' device was indeed a hyperbola [11, p. 55].  

Apollonius derived these properties directly from sections of a general cone.    

 In this way it is possible to make an investigation of hyperbolas, using both 

geometric and algebraic representations that creates a complete cognitive feedback 

loop. Neither representation is being used as a foundation for proof, instead one is led 

to a belief in a relative consistency between certain aspects of geometry and algebra 

through a checking back and forth between multiple representations.  A calculus 

derivation of the derivative of y = 1/x becomes, in this setting, a limited special case of 

the bisection property of hyperbolic tangents.  It can be very satisfying to see symbolic 

algebra arrange itself into answers that are consistent with physical and geometric 

experience.  Students of calculus can then experience the elation of Leibniz, as they 

build up a vocabulary of notation that becomes viable, because it can be checked against 

independently verifiable physical and geometric experience.  Mathematical language is 

then seen as a powerful and viable code for aspects of experience, rather than as the sole 

dictator of truth.    

 

Conchoids Generalized from Hyperbolas 

 The hyperbolic device is only the beginning of what appears in Descartes' 

Geometry. He discussed several cases where curve-drawing constructions can be 

progressively iterated to produce curves of higher and higher algebraic degree [11, 10].  

It is usually mentioned in histories of mathematics that Descartes was the first to 

classify curves according to the algebraic degree of their equations.  This is not quite 

accurate.  Descartes classified curves according to pairs of algebraic degrees, i.e. lines 
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and conics form his first class (he used the term genre), curves with third or fourth 

degree equations form his second class, etc. [11, p. 48].  This classification is quite 

natural if one is working with mechanical linkages and loci.  With most examples of 

linkage iteration, each iteration raises the degree of the curve's equation by two, with 

some special cases that collapse back to an odd algebraic degree [7].5  What follows is an 

example of such an iteration based on the hyperbolic device. 

 Descartes generalized the previous hyperbola construction method by replacing 

the triangle KLN with any previously constructed curve.  For example, let a circle with 

center L be moved along one axis and let the points C and C'  be the intersections of the 

circle with the line LG, where G is any fixed point in the plane and LG is a ruler hinged 

at point L just as in the hyperbolic device (see Figure 8).  Then C traces out a curve of 

degree four, known in ancient times as a conchoid [11, p. 55].  The two geometric 

parameters involved in the device are the radius of the circle (r), and the distance (a) 

between the point G and the axis along which L moves.   

 Figure 8 shows three examples of conchoids for a > r, a = r, and a < r.  If the curve 

is coordinatized along the path of L, and a perpendicular line through G (OG), then its 

equation can be found by looking at the similar triangles GOL and CXL (top of Figure 

8).  Since GO=a, LC=r, CX=y, OX=x, XL= r2–y2 , one obtains the ratios of the legs in the 

triangles as:  r2–y2
y    =  r2–y2 + x

a   , which is equivalent to  x2y2 = (r2–y2) (a–y)2, which 

is of fourth degree, or of Descartes' second class.  The squared form of the equation has 

both branches of the curve, above and below the axis, as solutions. 

                                                 
5  Descartes' linkages led directly to Newton's universal method for drawing conics which is essentially a 
projective method [7, 23].  This same classification by pairs of degrees is used in modern topology in the 
definition of "genus."  The "genus" of a non-singular algebraic plane curve can be thought of topologically 
as the number of "handles" on the curve when defined in complex projective space.  In complex projective 
space, linear and quadratic non-singular curves have genus 0, and are topologically sphere-like.  
Similarly, curves of degrees 3 and 4 are topologically torus-like, and have genus 1.  Curves of degrees 5 
and 6 are topologically double-holed and have genus 2, etc.  In the real model, (i.e. when considering only 
real solutions of one real equation in 2 variables) the genus 0 curves consist of at most one oval when you 
join up the asymptotes.  The genus 1 curves will have 2 ovals, which is what you'd expect  when cutting 
through a toric by a plane, etc.  (This comment was made to me by Paul Pedersen.)   
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  This example demonstrates Descartes' claim that, as one uses previously 

constructed curves to draw new curves, one gets chains of constructed curves that go 

up by pairs of algebraic degrees.  Descartes called the conchoid a curve of the second 

class (i.e. of degree three or four).  Dragging any rigid conic-sectioned shape along the 

axis, and drawing a curve in this manner will produce curves in the second class.  

Dragging curves of the second class will produce curves of the third class (i.e. degree 

five or six), etc.  Descartes demonstrated this general principle through many examples 

[11, 7, 10], but he did not offer anything like a formal proof, either geometric or 

algebraic.  His definition of curve classes was justified by his geometric experience. 
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Figure 8: Conchoids Drawn by Dragging a Circle Along a Line 
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 Notice that when a ≤ r, the point G becomes a cusp or a crossover point.  When 

singularities like cusps or crossover points occur, these tend to occur at important parts 

of the apparatus, like pivot points (e.g. point G), or at a point on an axis of motion.  

Other important examples of this phenomena can be found in Newton's notebooks [22, 

23].  I am not stating any particular or explicit mathematical theorem here.  This general 

observation is based upon my own historical research and empirical experience with 

curve drawing devices.  There are probably several ways to make this observation into 

an explicit mathematical statement, subject to proof (Newton attempted several, [23]).  

There are many important open questions concerning these forms of curve iteration and 

the relations between parts of the devices and singularities of the curves [7].  Students 

might benefit enormously from such empirical experience regardless of the extent to 

which they eventually formalize that experience in strictly algebraic or logical language.  

An instinctual sense of where curve singularities might occur is fundamentally useful in 

many sciences [1].  Modern computer software makes such investigations routinely 

possible with a minimum of technical expertise. 

 

Conclusions 
 Descartes wrote his Rules for the Direction of the Mind in 1625, twelve years before 
he would publish his famous Geometry.  In this earlier work he emphasized the 
importance of making strong connections between physical actions and their possible 
representations in diagrams and language.  Here are a few quotes from [12]. 
 

Rule 13:  If we understand a problem perfectly, it should be considered 
apart from all superfluous concepts, reduced to its simplest form, and 
divided by enumeration into the smallest possible parts. 
 
Rule 14:   The same problem should be understood as relating to the 
actual extension of bodies and at the same time should be completely 
represented by diagrams to the imagination, for thus will it be much more 
distinctly perceived by the intellect. 
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Rule 15:  It is usually helpful, also, to draw these diagrams and observe 
them through the external senses, so that by this means our thought can 
more easily remain attentive.  

 

 These lines from Descartes sound almost like parts of the hands-on, problem-

solving educational philosophy of mathematics put forth by the National Council of 

Teachers of Mathematics [21].  Descartes' entire approach to mathematics had problem 

solving as its foundation [14], but we must not allow ourselves to read into him too 

modern a perspective.  He was constructing a new method of mathematical 

representation that responded to both the new symbolic language of his time (algebra) 

and to the new technology of his time (mechanical engineering).  He was not seeking 

the broad educational goals of N.C.T.M., and in fact his Geometry was not widely read 

in the seventeenth century until it was republished in 1657 with extensive 

commentaries by Franz van Schooten. 

 Nonetheless, Descartes' approach to geometry through curve-drawing devices 

and locus problems has important implications for education.  His work connects 

important classical and Arabic traditions with modern algebraic formalisms [7].  It 

provides the missing linkages (pun intended).  These linkage and loci problems 

combined with the new dynamic geometry software allow for a new kind of exploration 

of curves leading to a type of investigation which could go far towards ending the 

isolation of geometry in our mathematics curriculum.  One can use geometrical curve 

generation to recreate calculus concepts such as tangents and areas in a much more 

elementary and physical setting [7, 8, 10], as well as to explore complicated questions 

about algebraic curves left open since the seventeenth century [7, 23].  Computer 

graphic techniques have already led to new branches of mathematical investigation 

(e.g., fractals).  Perhaps a new phase of computer-assisted empirical geometrical 

investigation of curves and surfaces has already begun.  If this new beginning is as 
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revolutionary as the century that began with Descartes' Geometry then we are in for 

some very exciting times ahead.           
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