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Functions of a Curve:  
Leibniz's Original Notion of Functions  

and its Meaning for the Parabola 
 

 When the notion of a function evolved in the mathematics of the late 
seventeenth century, the meaning of the term was quite different from our 
modern set theoretic definition, and also different from the algebraic notions of 
the nineteenth century.  The main conceptual difference was that curves were 
thought of as having a primary existence apart from any analysis of their 
numeric or algebraic properties.  Equations did not create curves, curves gave 
rise to equations.  When Descartes published his Geometry  [10] in 1638, he 
derived for the first time the algebraic equations of many curves, but never once 
did he create a curve by plotting points from an equation.  Geometrical methods 
for drawing each curve were always given first, and then by analyzing the 
geometrical actions involved in the curve drawing apparatus he would arrive at 
an equation that related pairs of coordinates (not necessarily at right angles to 
each other) [20].  Descartes used equations to create a taxonomy of curves [17].  
 This tradition of seeing curves as the result of geometrical actions 
continued in the work of Roberval, Pascal, Newton, and Leibniz.  Descartes used 
letters to represent various lengths but did not create any specific system of 
names.  Leibniz, who introduced the term function  into mathematics [2], 
considered six different functions associated with a curve, i.e., line segments or 
lengths that could be determined from each point on a curve relating it  to a 
given line or axis.  He gave them the following names: abscissa, ordinate, 
tangent, subtangent, normal, and subnormal.  These six are shown in Figure 1 for 
the curve RP, relative to the axis AO.  The line PO is perpendicular to AO.  The 
line PT is tangent to the curve at P, and the line PN is perpendicular to PT.   
 It is important to note here that the curve and an axis must exist before 
these six functions can be defined.  In this definition, the abscissa and ordinate 
may at first seem to be a parametric representation of the curve, but this is not 
the case.  No parameter, like time or arclength, is involved.  The setting is 
entirely geometric.  From the geometric point P, the line segments (functions) are 
defined relative to the axis AO.  Abscissa  is Latin for "that which is cut off," i.e. a 
piece of the axis, AO, is cut off.  By cutting off successive pieces of the axis, the 
curve gives us an ordered series of line segments PO as P moves along the curve.  
Hence the term  ordinate . 
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 It should also be noted here that all of these functions of a point, P, on a 
given curve are defined without reference to any particular unit of measurement.  
They are line segments.  Leibniz, of course, like Descartes, wanted to introduce 
quantification, and analyze the properties of curves algebraically, but since the 
definition of the functions is geometric, he could postpone the choice of a unit 
until an appropriate one could be found for the curve at hand.  The advantage of 
this will emerge in our discussion of the parabola.                   

     
  PO = ordinate  AO = abscissa     
  PT  = tangent  OT = subtangent 
  PN = normal  ON = subnormal  
        Figure 1 
 
 Since angles TPN, POT, and PON are right angles, the triangles TOP, 
PON, and TPN are all similar.  This configuration will be familiar to geometers as 
the construction of a geometric mean between ON and OT, the mean being OP.   
 Inspired by the work of Pascal, Leibniz saw a fourth triangle which was 
similar to the three mentioned above [5], [2], [11].  This was the infinitesimal  or 
characteristic  triangle (see Figure 2), used by Pascal to integrate the sine function 
[21].  Leibniz viewed a geometric curve as made up of infinitely small line 
segments which each had a particular direction.  He perceived the utility of this 
concept in Pascal's work and it became one of the primary notions in his 
development of a system of notation for calculus.  Although many modern 
mathematicians avoid this conception, it is still used as an important conceptual 
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device by engineers.  Figure 2 still appears in calculus books because it conveys 
an important meaning, especially to those who use calculus for the analysis of 
physical or mechanical actions.1   
 

       
    Figure 2 
 
 Leibniz saw great significance in the triangles of Figure 1 because they 
were large and visible yet similar to the unseen characteristic triangle.  This 
finding of large triangles which are similar to infinitesimal ones is a theme that 
runs through many of the most important works of Leibniz [8], [11].  From 

Figures 1 and 2, the similarity relations tell us that  dy
dx   =  PO

OT   =  ON
PO   . 

 Let us look at how this system works in the case of the parabola.  We must 
first have a way to draw a parabola.  Everything begins with the existence of a 
curve.  Figure 3 shows a linkage which will draw parabolic curves.  This figure 
comes from the work of Franz Van Schooten (1615 - 1660) [23, p. 359] whose 
extensive commentaries on Descartes' Geometry  were widely read in the 
seventeenth century [22].  Because his works supplied many of the details 
omitted in Descartes they were more popular than the Geometry  itself.      

                                                
1  With the invention, early in this century, of the calculus of differentials as 
linear functions on the tangent line to the curve, Leibniz's fundamental insight 
was made rigorous without recourse to "infinitesimals" [18, p.92]. 
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     Figure 3 
 
 This apparatus constructs the parabola from the familiar focus/directrix 
definition.  That is, the parabola is the set of point equidistant from a point and a 
line.  The ruler GE is the directrix and the point B is the focus.  Four equal-length 
links create a movable rhombus, BFGH, which guarantees that FH will always be 
the perpendicular bisector of BG, as G moves along the ruler.  GI is a movable 
ruler which is always perpendicular to the directrix EG.  The point D is the 
intersection of FH and GI as the point G moves along directrix.   Hence at all 
positions BD = GD, and hence D traces a parabola with focus B and directrix EG. 
 This construction can be simulated on a computer using the software 
Geometer's Sketchpad ™ [14].  This software allows one to define a perpendicular 
bisector so the rhombus is unnecessary.  One can either drag a point along the 
directrix or have the computer animate such a motion.  Figure 4 was made using 
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this software.  The point F is the focus, and the point S is moving along the 
directrix.  BP is the perpendicular bisector of FS, SP is always perpendicular to 
the directrix, and the intersection point P traces a parabola.  

 
     Figure 4 
 
 One consequence of this construction that is immediately apparent to the 
eye is that at each point, BP is the tangent line to the curve at P.  Curves can often 
be drawn by constructing a series of tangents to the curve, the curve being the 
"envelope" of its family of tangent lines.  This can often be done using strings or 
paper foldings [19], [13].  In order to fold a parabola as in Figure 4, let one edge 
of a sheet of paper be the directrix and mark any point as the focus.  Make a 
series of folds each of which brings a point on the directrix onto the focus.  These 
folds will then be the perpendicular bisectors of the segments between these 
pairs of points, hence tangent lines to the parabola.   
 Using the axis of symmetry of the parabola as our axis for abscissas and 
the vertex, A, as our starting point, we can investigate this curve using the six 
functions of Leibniz (Figure 5).  Since the tangent line is part of the construction 
this can be readily accomplished with Geometer's Sketchpad.  It is impossible to 
convey the feel of this moving construction on paper and we would strongly 
encourage the reader to experience it by dragging the point S up and down the 
directrix and observing how the "Leibniz configuration" changes. 
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     Figure 5 
 
 What can be seen by watching the six functions in this dynamic setting?  
With the figure in motion and using color to highlight the six functions, two 
invariances become readily apparent.  The first that most people notice is that the 
subnormal, ON, has constant length.  The second is that the vertex A is always 
the midpoint of the subtangent, OT, for points O and T can be seen to approach 
and recede from  point A  symmetrically.  These two invariances can be easily 
deduced from the geometry of the construction, but of greater significance is that 
they can be visually experienced from the action of the construction.  Geometer's 
Sketchpad  allows for confirmation of ones visual experience by turning on meters 
which monitor these lengths empirically.  Sure enough, ON has constant length, 
and the length of AT is always equal to the length of AO. 
 Postponing for a moment the geometrical proofs of these two statements, 
let us first look at what they tell us about the parabola.  In the tradition of 
Descartes, we introduce variables after we have drawn the curve.  Let x=AO, and 
let y=PO, i.e. x is the length of the abscissa, and y is the length of the ordinate.  

Since triangles TOP and PON are similar, we have that   PO
OT   =  ON

PO  .  Since A is 

the midpoint of OT, this becomes   y
2x   =  ON

y    , or  (2. ON). x = y2 .   Since ON is 

constant, this yields the equation of the parabola.  The constant length (2. ON) is 
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known in geometry as the latus rectum , i.e. the rectangle formed by x and the 
latus rectum is always equal in area to the square on y.   As we are free to choose 
our unit, we could choose ON = 1/2.  The equation then becomes x=y2. 
 Using the similarity between the characteristic triangle and triangle TOP, 

we obtain  dx
dy   =  OT

PO   = 2x
y    =  2y .   Hence both the equation and the derivative 

can be found from considering the invariant properties of Leibniz's configuration 
under the actions which constructed the curve.   
 The choice of ON = 1/2 gave the equation and derivative of the parabola 
in their best known form, but this is perhaps a little artificial from the geometric 
standpoint.  The subnormal ON is the primary invariant of this curve-drawing 
action and can be seen as the natural choice of a unit for this curve.  As it turns 
out, the subnormal ON is always equal to the distance between the focus and the 
directrix of the parabola.  Thus it is a natural unit.  Using the subnormal as a unit, 

the equation of the parabola becomes x= y
2

2   , i.e. the common integral form of the 

parabola as the accumulated area under the line x=y.  It is in this form that the 
parabola most often appears in the table interpolations of John Wallis and Isaac 
Newton [9].      
 One way to prove that the subnormal is constant is to show that it always 
equals the distance between the focus and the directrix.  Looking at Figure 5, we 
see that SF and PN are both perpendicular to BP, so triangles SCF and PON are 
congruent; hence ON = CF. 
 In order to prove that the vertex A is always the midpoint of the 
subtangent OT, one can establish that triangles TBA and PBK are congruent.  
They are clearly similar, but since B is the midpoint of SF it is also the midpoint 
of AK, so they are congruent.  Hence TA = KP = AO. 
 Lastly, one might ask: how can we be sure that the line BP is always 
tangent to the parabola?  That is to say, how can we be sure that each instance of 
the line BP intersects the parabola in only one point?  Let Q ≠ P  be a point on BP, 
and let R be the foot of the perpendicular from Q to the directrix CS.  Since R is 
the closest point to Q on the directrix,  QR < QS .  Since BP is the perpendicular 
bisector of SF,  QS = QF.  Hence QR < QF and Q cannot be on the parabola, being 
closer to the directrix than to the focus.  One could also check the tangency of BP 
analytically by writing the equation of the parabola and the line BP using the 
same coordinate system, and then solving the two equations simultaneously 
arriving at a quadratic equation with one repeated root.  This is the method that 
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Descartes developed for finding tangents, i.e. tangency occurs when repeated 
roots appear in the simultaneous solutions.             
 These two invariant properties of the parabola were never mentioned (so 
far as we know) in the published work of Leibniz.  The fact that the vertex is the 
midpoint of the subtangent was demonstrated by Apollonius [1].  The fact that 
the subnormal is constant is credited to L. Euler, who expanded and popularized 
the ideas of Leibniz [7].  They both appear in Book 2 of Euler's most famous 
textbook, the Introduction to Analysis of the Infinite  [12].  This book, first published 
in 1748, was the first modern precalculus textbook and, along with its sequels on 
differential and integral calculus, did much to standardize curriculum and 
notation.  Nearly all of the topics in our modern precalculus books are contained 
in Euler's book, but what is missing from our modern treatments is the bold 
empirical spirit of Euler's investigations, as well as most of his more advanced 
geometry and infinite series.  Euler says in the preface to his text that he presents 
many questions which can be more quickly resolved using calculus.  He insists, 
however, that students are rushing into calculus too rapidly, and that they will 
become confused because they lack the experiential basis (both geometric and 
algebraic) upon which calculus is built. 
 The parabola example demonstrates how much can be found using only 
basic geometry combined with empirical investigation.  By letting the 
configuration move, we create a situation where algebra evolves naturally from 
geometry.  Too often in our schools we find our geometry curriculum static and 
isolated from other topics, especially algebra.  Two-column geometry proofs 
provide a shadow of Euclid, but they cannot provide the dynamic experience 
that leads to an understanding of functions and calculus.  An important 
philosophical prerequisite for understanding calculus is the belief that geometry 
and algebra are consistent with each other, and historically this belief did not 
come easily [4].  This belief is too often tacitly assumed in our classrooms.  In 
order for students comprehend and appreciate this they must first be allowed to 
experience doubt as to whether a geometric result will be confirmed by an 
arithmetic result [8].  With modern software, computers can now readily 
simulate moving geometry, and this experience can be very compelling.  For 
some, an empirical experience based on mechanical devices or paper folding can 
be even more compelling .  
 For the reader who wishes to attempt this kind of analysis on other 
curves, we offer the following tantalizing tidbit.  If the directrix in the above 
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construction is a circle instead of a line then one can draw both hyperbolas and 
ellipses with their tangents [8], [23].2  Paper folding also works [19], [13].  In the 
case of the hyperbola, if a tangent line at a point P is extended until it intersects 
the asymptotes at points A and B, then P will always be the midpoint of the 
segment AB.  This little-known theorem is in Euler [12] but goes back to 
Apollonius [2].  As an empirical observation this can lead in many analytic 
directions.  For example, the derivative of y=1/x can be immediately seen to be  -
1/x2.  Check it out!   
 
Exercise:  We have shown that parabolas have constant subnormals.  What type 
of curves have constant subtangents?   (Answer appears after the references.) 
     
 In order to have the kind of empirical experience that Lakatos [15] 
suggests is fundamental to mathematical discovery, people should be 
encouraged to design, build, and explore their own devices and computer 
simulations.  Some experience with mechanical devices can greatly aid many 
students as they attempt to master the use of software like Geometer's Sketchpad.   
All algebraic curves, for example, can be drawn with linkages [3]; some are easily 
built and others are best simulated.  The border between mathematics, 
simulation, and mechanical engineering can become quite fuzzy.  In such a 
setting geometry and algebra complement, validate, and empower one another 
without forming a hierarchy.     
 After many years of working in mathematics education at all levels, we 
have come to believe that effective educational practice must involve people in a 
balanced dialogue between "grounded activity" and "systematic inquiry" [6].  
This discussion of the parabola provides an excellent example of such a dialogue. 
 

                                                
2  For a discussion of how this general method of drawing conics can be applied 
to planetary orbits see the wonderful article by A. Lenard [16] . 
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Answer to the Exercise: 
 Exponential Curves always have a constant subtangent.  This property 
was considered a hallmark for the recognition of such curves by Descartes and 
others in the seventeenth century [17].  Using the standard coordinate system, 
the value of the constant subtangent is equal to the inverse of the slope of the 
curve at (0,1), hence y=ex has a constant subtangent of 1.  (For a discussion of this 
question and many others like it, see [8].) 
 


