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Appendices to  The Creation of Continuous Exponents by David Dennis 
 
Appendix 1: The Binomial Series of Isaac Newton 
In 1661, the nineteen-year-old Isaac Newton read the Arithmetica Infinitorum and was 
much impressed.  In 1664 and 1665 he made a series of annotations from Wallis which 
extended the concepts of interpolation and extrapolation.  It was here that Newton first 
developed his binomial expansions for negative and fractional exponents and these 
early papers of Newton are the primary source for our next discussion (Newton, 1967a, 
Vol. 1, p 89-142).  
 Newton made a series of extensions of the ideas in Wallis.  He extended the 
tables of areas to the left to include negative powers and found new patterns upon 
which to base interpolations.  Perhaps his most significant deviation from Wallis was 
that Newton abandoned the use of ratios of areas and instead sought direct expressions 
which would calculate the area under a  portion of a curve from the value of the 
abscissa.   Using what he knew from Wallis he could write down area expressions for 
the integer powers.  Referring back to figure 1, we have: 
 

Area under xn
Area of containing rectangle   =  1

n+1    ,        and 
 
Area of the containing rectangle =  x . xn  =  xn+1  ,       hence,  
 

the Area under the curve xn =  x
n+1

n+1  .   
 
 Using this form combined with binomial expansions, Newton wrote down 
progressions of expressions which calculated the area under curves in particular 
families.  For example, he considered the positive and negative integer powers of 1+x,  
i.e. the series of curves : 
 

. . . . .  y= 1
1+x  ,    y=1,    y=1+x ,    y= (1+x)2,    y=(1+x)3,    y=(1+x)4, . . . . .  

 
He was particularly interested in the hyperbola and wanted to find its area expression 
by interpolation after having failed to obtain its area by purely geometric considerations 
(Newton, 1967a, Vol. 1, p 94). 
 Newton drew the following graph of several members of this family of curves 
(figure 4).  Appearing in the graph are a hyperbola, a constant, a line, and a parabola, 
i.e. the first four curves in the progression.. 
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    Fig. 4  

Letting ck=cd=1 and de = x , the ordinates here are:  eb= 1
1+x  ,  ef=1,  eg=1+x,  

eh=(1+x)2 .  He then wrote down a series of expressions which calculate the areas under 
the curves over the segment de=x as: 
   

Area(afed)= x,      Area(aged)= x + x
2

2   ,       Area(ahed)= x + 2x2
2    +  x

3
3   . 

   
The third one is obtained by first expanding (1+x)2, as 1+2x+x2 (see appendix 3).  
Although the higher power curves did not appear in the graph Newton went on to 
write down more area expressions for curves in this family.  For the positive integer 
powers  3, 4, and 5  of (1+x)  he obtained the following area expressions by first 
expanding and then finding the area term by term. 
 

(third power)  x + 3x2
2   +3x3

3   + x
4

4   ,      (fourth power)  x + 4x2
2   +6x3

3   + 4x4
4   + x

5
5   , 

   

(fifth power)  x + 5x2
2   +10x3

3   + 10x4
4   + 5x5

5   + x
6

6   . 
 
 At this point Newton wanted to find a pattern which would allow him to extend 
his calculations to include the areas under the negative powers of (1+x).  He noticed 
that the denominators form an arithmetic sequence while the numerators follow the 
binomial patterns.  This binomial pattern in the numerators is not so surprising given 
that they came from expansions.  He then made the following table of the area 
expressions for (1+x)p  (see table 4) , where each column represents the numbers in the 
numerators of the area function.  The question then becomes: how can one fill in the 
missing entries?  He began by assuming that the top row remains constant at the value 
1. 
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     Table 4  
     p 
 
term 

-4 -3 -2 -1  0  1  2  3  4  5  6 

x
1   1  1  1  1  1  1  1  1  1  1  1 

x2
2   

    ?  0  1  2  3  4  5  6 

x3
3   

     0  0  1  3  6  10  15 

x4
4   

     0  0  0  1  4  10   20 
 

x5
5   

     0  0  0  0  1  5  15 

x6
6   

     0  0  0  0  0  1  6 

x7
7   

     0  0  0  0  0  0  1 

 
 This binomial table is different from Wallis' table in that the rows are all nudged 
successively to the right so that the diagonals of the Wallis table become the columns of 
Newton's table.  The binomial pattern of formation is now such that each entry is the 
sum of the entry to the left of it and the one above that one.  Using this rule backwards 
as a difference we find, for example, that the  ?  must be equal to -1.  Each new diagonal 
to the left is the sequence of differences of the previous diagonal.  This was Newton's 
first use of difference tables. Continuing on in a similar manner Newton filled in the 
table of coefficients for the area expressions under the curves (1+x)p  as follows: 
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     Table 5  
     p 
 
term 

-4 -3 -2 -1  0  1  2  3  4  5  6 

x
1   1   1  1  1  1  1  1  1  1  1  1 

x2
2   

-4 -3 -2 -1  0  1  2  3  4  5  6 

x3
3   

 10  6  3  1  0  0  1  3  6  10  15 

x4
4   

-20 -10 -4 -1  0  0  0  1  4  10  20 

x5
5   

 35  15  5  1  0  0  0  0  1  5  15 

x6
6   

-56 -21 -6 -1  0  0  0  0  0  1  6 

x7
7   

 84  28  7  1  0  0  0  0  0  0  1 

  
 At this point Newton could write down the area under the hyperbola:   

y= 1
1+x  ,  (i.e. what we now call the natural logarithm of 1+x )(see figure 4) as: 

 

(6)  Area(abed)= x - x
2

2   + x
3

3   - x
4

4   + x
5

5   - x
6

6   + x
7

7   . . . . 
 
He then made several detailed calculations using the first 25 terms of this series to 
compute hyperbolic areas to more than 50 decimal places.  Newton later became aware 
that this function displayed logarithmic properties and could be used to create a table of 
common logarithms (Edwards, 1979, p. 160). 
 
 Newton repeatedly returned to the table of characteristic ratios made by Wallis 
(table 3).  As discussed previously, Newton abandoned Wallis' use of area ratios and set 
out to make a table of coefficients for a sequence of explicit expressions for calculating 
areas. He used the same set of curves whose characteristic ratios Wallis had tabulated in 
the row q=1/2, but Newton let r=1 (in the circle case r is the radius). Hence he 
considered the areas (over the segment de=x) under the following sequence of curves 
(see figure 5): 
 
. . . . ,    y=1,     y= 1-x2  ,     y=1-x2 ,     y=(1-x2) 1-x2  ,      y=(1-x2)2 , . . . . .  
  
These are the powers of (1-x2) at intervals of 1/2.  In this early manuscript Newton did 
not write fractions directly as exponents, but when he later announced the results of his 
researches in a series of letters he did, thus (1-x2) 1-x2  would become (1-x2)3/2.  
Several times Newton drew graphs of these curves inside the unit square (see figure 5).  
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(Newton's original manuscript containing one of these graphs is on the cover of this 
paper.) 

   
    Fig. 5 
 
 He let ad=dc=1 and de=x ;  ef, eb, eg, eh, ei, en, . . . are then the ordinates of his 
series of curves respectively.  Note that the curve abc is a circle, and agc is a parabola. 
   For the integer powers of  (1-x2), Newton could write down the areas in his 
graph (figure 5) as: 

Area(afed) = x,      Area(aged) = x - 13  x3,      Area(aied) = x - 23  x3 + 15  x5   
As before, these are obtained by first expanding the binomials and then writing down 
the area expressions term by term.  Once again he applied the characteristic ratios of 
Wallis to each separate term in the expansion (see appendix 3).  Although the higher 
powers no longer appeared in his graph Newton continued this sequence of area 
expressions for (1-x2)p  as follows: 
 

(p=3)     x - 33  x3 + 35  x5 - 17  x7 ,           (p=4)    x - 43  x3 + 65  x5 - 47  x7+ 19  x9 ,  
 

(p=5)     x - 53  x3 + 10
5   x5 - 10

7   x7+ 59  x9 - 1
11  x11 ,       etc.  

 
Once again he saw that the denominators formed an arithmetic sequence and that the 
numerators followed a binomial pattern.  As before Newton made a table of these 
results including an extension into the negative powers.  Table 6 is a table of coefficients 
of the expressions which compute the area under the curves  
y = (1-x2)p .  
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     Table 6 
     p 
 
term 

-1 -1
2   0 1

2  1 3
2  2 5

2  3 7
2  4 

x
1   1  1  1  1  1  1 

-x3
3   

-1  0  1  2  3  4 

x5
5   

 1  0  0  1  3  6 

-x7
7   

-1  0  0  0  1  4 

x9
9   

 1  0  0  0  0  1 

-x11
11   

-1  0  0  0  0  0 

x13
13   

 1  0  0  0  0  0 

  
 It now remained to find a way to interpolate the missing entries for the fractional 
powers.  In this table each entry is the sum of the entry two spaces to the left and the 
entry directly above that one.  The entries above the diagonal of 1's had already been 
interpolated by Wallis in table 3, and from these one could complete the table by 
differences as in table 5.  One could also have used the polynomials that appeared in the 
margins of Wallis' table 3 to fill in this table.  Newton, however, devised his own system 
of interpolation which he could check against these others.  Instead of forming 
polynomial expressions for the interpolation of each row Newton used the known 
entries to generate a system of linear equations whose solution would determine the 
missing entries.   
 He first noted that integer binomial tables obey the following additive pattern of 
formation (table 7).
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     Table 7  
a a a a a 
b a+b 2a+b 3a+b 4a+b 
c b+c a+2b+c 3a+3b+c 6a+4b+c 
d c+d b+2c+d a+3b+3c+d 4a+6b+4c+d 
e d+e c+2d+e b+3c+3d+e a+4b+4c+4d+e 
 
 This pattern is formed by starting with a constant sequence (a,a,a,...) and an 
arbitrary left hand column (a,b,c,d,...); and then forming each entry as the sum of the 
one to the left and the one above that.  This, as it stands, would not work for the 
completion of the fractional interpolated tables, because the entries in the top row must 
all be 1 in all the interpolated tables (i.e. a=1), but this would force the increment of the 
second row also to be one.  To get around this difficulty, Newton rewrote this pattern so 
as to unlink the rows of table 7.  That is to say, he preserved the pattern within each 
individual row but he changed the names of the variables so that each variable 
appeared in only one row.  As you move down the rows each new row can be described 
using successively one more variable.   Changing the names of variables so that each 
row is independent of the others, the pattern now becomes table 8. 
        
     Table 8 
a a a a a 
b c+b 2c+b 3c+b 4c+b 
d e+d f+2e+d 3f+3e+d 6f+4e+d 
g h+g i+2g+h k+3i+3h+g 4k+6i+4h+g 
l m+l n+2m+l p+3n+3m+l q+4p+6n+6m+l 
  
 Using table 8, if any entry in the first row is known the whole row is known.  If 
any two entries in the second row are known then one can solve for b and c and fill in 
the entire row.  If any three entries in the third row are known one can solve for d, e and 
f and fill in the entire row.  Thus with a sufficient number of known values in a given 
row one could solve a system of linear equations for all the variables in that row.  
Newton solved sets of linear equations to find these values and that allowed him to fill 
in the interpolated table.  This method allowed him not only to interpolate the binomial 
table at increments of 1/2, but at any increment, for example, thirds.   
 He then completed table 6.  Let us complete the third row, for example, using the 
known values 0, ?, 0, ?, 1, ?   We obtain d=0,  f+2e+d=0, and  6f+4e+d=1.  Thus d=0,  f =  
1
4  , and e =  -18    .  We can now complete the entire row using these values, but it should 
be noted here that although we used three equations to find d, e, and f there are actually 
an infinite number of equations involving these three variables and one might ask if this 
set of equations is consistent.  They are, but Newton did not address this issue.  He is 
satisfied because the values he finds agree with Wallis and with the additive pattern of 
table formation.  With the completion of table 6, Newton will also obtain a new way to 
calculate π  which will validate his method in a geometric representation.  Table 6 now 
becomes:  
      
     Table 9 
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     p 
 
term 

-1 -1
2   0 1

2  1 3
2  2 5

2  3 7
2  4 

x
1   1 1 1 1 1 1 1 1 1 1 1 

-x3
3   

-1 -1
2   0 1

2  1 3
2  2 5

2  3 7
2  4 

x5
5   

 1 3
8  0 -1

8   0 3
8  1 15

8   3 35
8   6 

-x7
7   

-1 -5
16  0 3

48  0 -1
16  0 5

16  1 35
16  4 

x9
9   

 1 35
128  0 -15

384  0 3
128  0 -5

128  0 35
128  1 

-x11
11   

-1 -63
256  0 105

3840  0 -3
256  0 3

256  0 -7
256  0 

x13
13   

 1 231
1024  0 -945

46080  0 7
1024  0 -5

1024  0 7
1024  0 

    
 The column p=1/2 gives an infinite series which calculates the area under any 
portion of a circle (see figure 5).  That is to say that Area(abed) is given by (7), where 
de=x. 
 

(7) x - 12  . x
3

3    - 18  . x
5

5    - 3
48  . x

7
7    - 15

384  . x
9

9    - 105
3840  . x

11
11   -. . .  

 
Letting x=1 in this series calculates the area of one quarter of the circle and thus  yields a 
new calculation of π: 
 

(8) π
4   = 1  -  16   -  1

40   -  1
112   -  5

1152   -   7
2816   -  . . . .  

 
Checking that this series does agree with the value of π obtained from geometrical 
arguments like those of Archimedes, as well as the infinite product of Wallis; provided 
Newton with a validation of this interpolation in alternate representations.  
 Newton later became aware that the interpolation procedure based on the 
patterns of table 8 was equivalent to the assumption that rows of this table could be 
interpolated using polynomial equations of increasing degree.  That is to say, the first 
row is constant, the second row is linear, the third row is quadratic, and so on.  This is 
consistent with the method used by Wallis, and would suggest to Newton a general 
procedure for the interpolation of data which we will describe in the next section.  
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    Fig. 6 
 
 Newton also pointed out that this series allowed him to compute the arcsin(x).  
By adding a line from d to b in figure 5 (see figure 6), and subtracting the area of the 
triangle(dbe) from the Area(abed), one obtains the area of the circular sector(abd).  Since 
this is the circle of radius one, twice the area of the sector(abd) equals the arclength(ab) 
(when r=1, area=π, and circum.=2π).  The triangle(dbe) to be subtracted from the series 
has area equal to  
1
2   x 1-x2 . 
   Satisfied with his interpolation methods Newton began searching for a pattern in 
the columns of his table which would allow him to continue each series without having 
to repeat his tedious interpolation procedure row by row.  Note that some of the 
fractions in table 9 are not reduced.  In earlier tabulations Newton did reduce the 
fractions but he soon became aware that this would only obscure any possible patterns 
in their formations.  Following the example set by Wallis he sought a pattern of 
continued multiplication of arithmetic sequences.  Since the circle was so important to 
him he studied the p=1/2 column first.  Factoring the numbers in these fractions he 
found that they could be produced by continued multiplication as: 
 

(9)  1
1   .  12   .  -14    .  -36    .  -58    .  -710   .  -912   .  -11

14    .   .   .   . 

Similarly the entries in the p=3/2 column could be produced by continued 
multiplication as: 
 

 (10)  1
1   .  32   .  14   .  -16    .  -38    .  -510   .  -712   .  -914   .   .   .   . 

 In order to further investigate these patterns, Newton carried out an 
interpolation of the binomial table at intervals of 1/3.  Using the patterns from table 8 
and solving the systems of equations for the variables in each row he produced the 
following interpolated table 10.  Note that at this point he does not write down the 
terms in the expansions for which these numbers are coefficients.  Newton never 
mentions an explicit context of area calculations for which table 10 was intended.  At 
this point he is working solely within a table representation in order to find an explicit 
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formula for the fractional binomial numbers whose patterns began revealing 
themselves in (9) and (10).  After another long round of solving systems of linear 
equations, Newton arrived at: 
 
     Table 10 
 0  13   23   1  43   53   2  73   83   3  10

3   

 1 
 

 1  1  1  1  1  1  1  1  1  1 

 0  13   23   1  43   53   2  73   83   3  10
3   

 0  -19    -19    0  29   59   1  14
9    20

9    3  35
9   

 0  5
81   4

81   0  -481   -581   0  14
81   40

81   1 140
81   

 0 
 

-10
243  -7

243   0 5
243  5

243   0 -7
243  -10

243   0 25
243  

 0 
 

22
729  14

729   0 -8
729  -7

729   0 7
729  8

729   0 -14
729  

 
 Searching, as before, for a pattern of repeated multiplication of arithmetic 
sequences that would generate the columns of this table, Newton discerned the 
following pattern for the column p=1/3. 
 

(11)  1
1   .  13   .  -26    .  -59    .  -812   .  -11

15    .  -14
18    .  -17

21    .   .   .   . 
  
Here the sequence of numerators and denominators both change by increments of 3 
(ignoring the first term), the former going down while the later go up.  In (9) and (10) 
the same thing happened but by increments of 2.  At this point Newton wrote down an 

explicit formula for the binomial numbers in an arbitrary column p = xy  . 
 

(12)  1
1   .  xy   .  x-y

2y    .  x-2y
3y    .  x-3y

4y    .  x-4y
5y    .  x-5y

6y    .   .   .   .   
 
 This formula makes perfect sense given the form of the examples from which it 
was constructed.  If the y's in the denominators are taken into the numerators it 
becomes the formula for the binomial coefficient that is familiar to a modern reader.  
Dropping the first term and letting n=x/y, as Newton would do in his later letters, (12) 
becomes: 
 

(13)  n
1   .  n-1

2    .  n-2
3    .  n-3

4    .  n-4
5    .  n-5

6    .   .   .   .  
 
  The binomial series became the engine which generated a wealth of examples 
from which Newton would later build his version of calculus.  Once he had written 
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down (12) and later (13), he began a long series of experiments and checks to convince 
himself of its validity. For example, by using synthetic division one can write:  

  1
1+x   = 1 - x + x2 - x3 + x4 - x5 + x6 - x7 + . . . .  

By computing the area of this series term by term one could then arrive at the series for 
hyperbolic areas (6).  It is important to note here that this is not how Newton first 
constructed (6) (several history books give that impression as does one of Newton's 
own accounts).  He noticed this later and saw it as an important algebraic confirmation 
of the validity of his table construction.  Thus his extension of the binomial table could 
be checked against both geometric areas, and algebraic generalizations of arithmetic.   
  His original interpolations were designed to calculate areas under families of 
curves but Newton soon saw that by changing the terms to which the coefficients were 
applied he could use these numbers to calculate the points on the curve as well.  This 
was particularly useful for root extractions.  He simply had to replace the area terms 
xn+1
n+1   with the original terms xn from which they came.  The coefficients in the tables 
remain the same.  For example, the p=1/2 column of table 9 can be used to calculate 
square roots as: 
 

(14)   (1-x2)1/2   = 1- 12  x2 - 18  x4 - 1
16  x6 - 5

128  x8 .  .  .  .  . 
 

(15)    (1+x )1/2  = 1+  12  x - 18  x2 + 1
16  x3 - 5

128  x4  .  .  .  .  . 
 
The p=1/3 column of table 10 can be used to calculate cube roots as: 
 

(16)    (1-x2)1/3  = 1- 13  x2 - 19  x4 - 5
81  x6 - 10

243  x8 .  .  .  .  . 
 

(17)     (1+x)1/3  = 1+ 13  x - 19  x2 + 5
81  x3 - 10

243  x4 .  .  .  .  . 
 
 These series appear in this form in the letters (1676) to Oldenburg in which 
Newton explained his binomial series at the request of Leibniz (Callinger, 1982; Struik, 
1986).  He checked the consistency of these series in many ways.  Various geometric 
methods for finding square roots were known against which (14) and (15) could be 
checked.  The series (15) can be multiplied by itself term by term to arrive at 1+x , all 
other terms canceling out.  Newton never gave anything like a formal proof of the 
validity of these generalized binomial expansions.  His approach was always empirical.  
He tried them in various contexts and they worked.  If certain values were needed for 
which a particular series diverged, he just rewrote it in another form until he found one 
that converged.  Questions concerning convergence were treated empirically for over a 
century after Newton.  As we shall see in the next discussion, Newton did not 
distinguish between the interpolation of scientific data and the continuous calculation 
of mathematically defined curves. 
 
Appendix 2: Newton and Empirical Interpolation 
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 In the second of the two letters to Oldenburg of 1676, Newton remarks, "When 
simple series are not obtainable with sufficient ease I have another method, not yet 
published, by which the problem is easily dealt with.  It is based upon a convenient, 
ready, and general solution of the problem.  To describe a geometrical curve which shall 
pass through any given points. . . Although the problem may seem to be intractable at 
first sight it is never the less quite the contrary.  Perhaps indeed it is one of the prettiest 
problems that I can ever hope to solve." (Fraser, 1927, p.45).  By the term "geometrical 
curve" here Newton means a curve with a polynomial equation.  He did eventually 
publish (1710) his method for finding a polynomial equation that would pass through 
any given finite set of points in his Methodus Differentialis (Newton, 1967b, Vol.  2).  
 We shall briefly describe one section of this work and show its connection to the 
binomial series.  We seek to show how important finite difference tables were in 
Newton's work, and to emphasize the empirical groundwork that formed the basis of 
much of his thinking.  As the quote above makes clear, finding say a fourth degree 
polynomial that passed through a given set of five data points was for Newton the same 
problem as generating the first five terms of an infinite series.  Theoretical expansions 
and fitting a curve to data were in his mind the same problem.  For more details see the 
excellent article by Fraser (1927).    
 Newton first presented his method by working out in detail the example of 
finding a fourth degree polynomial equation that passes through an arbitrary set of five 
points.  He first calculated what he called "divided differences."  We shall employ 
Fraser's notation and make a table to show how these differences are calculated.  Let  ∆' 
denote the first divided difference which is the same as the average rate of change 
between two points.  ∆'2 , ∆'3, ∆'4 , shall denote the second, third, and fourth divided 
differences.  Each of these is calculated as the difference in the previous one divided by 
the overall difference in the x-values which were involved in its formation.  Three data 
points are needed to construct one value of ∆'2, four are needed for each value of ∆'3, 
etc.  See table 11.  Note that Newton calculated his differences in the opposite order 
from most modern conventions, but since he is dividing by the x differences his signs 
will come out the same.            
 
    Table 11 
x  y   ∆'     ∆'2        ∆'3         ∆'4 
p α  

α-β
p-q   

   

q β  
β-γ
q-r  

∆'(p,q)-∆'(q,r)
p-r    

∆'2(p,q,r)-∆'2(q,r,s)
p-s   

 

r γ  
γ-δ
r-s   

∆'(q,r)-∆'(r,s)
q-s    

∆'2(q,r,s)-∆'2(r,s,t)
q-t   

∆'3(p,q,r,s)-∆'3(q,r,s,t)
p-t   

  s δ  
δ-ε
s-t   

∆'(r,s)-∆'(s,t)
r-t     

t ε     
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 Given five points only one value of ∆'4 can be calculated.  Hence we seek a 
function which has that constant value as its fourth divided difference everywhere.  
Such a function must be a fourth degree polynomial.  We then must find its coefficients.  
Here is how Newton described that procedure.  Suppose that y=a+bx+cx2+dx3+ex4 .  
When we form first differences, 'a' drops out.  When we divide those differences by the 
changes in x, the denominator must be a factor of the numerator and therefore it can be 
canceled.  This happens at each step, i.e. we lose one more of the polynomial coefficients 
and the divisors are always factors.  Newton wrote the divided differences in his table 
in polynomial form as follows: 
(18)  ∆'(p,q) = b+c(p+q)+d(p2+pq+q2)+e(p3+p2q+pq2+q3) 
  ∆'(q,r) = b+c(q+r)+d(q2+qr+r2)+e(q3+q2r+qr2+r3) 
  ∆'(r,s) = b+c(r+s)+d(r2+rs+s2)+e(r3+r2s+rs2+r3) 
  ∆'(s,t) = b+c(s+t)+d(s2+st+t2)+e(s3+s2t+st2+t3) 
  
  ∆'2(p,q,r) = c+d(p+q+r)+e(p2+pq+q2+pr+qr+r2) 
  ∆'2(q,r,s) = c+d(q+r+s)+e(q2+qr+r2+qs+rs+s2) 
  ∆'2(r,s,t) = c+d(r+s+t)+e(r2+rs+s2+rt+st+t2) 
 
  ∆'3(p,q,r,s) = d+e(p+q+r+s) 
  ∆'3(q,r,s,t) = d+e(q+r+s+t) 
 
  ∆'4(p,q,r,s,t) = e 
 
 Here we see that the fourth divided difference is the coefficient of the fourth 
degree term.  Knowing 'e' we can now go back to either of ∆'3 equations and solve for 
'd'.  Knowing 'e' and 'd' we can go back to any one of the ∆'2 equations and solve for 'c'.  
Continuing in this way we can completely determine the desired polynomial.  As in his 
previous table interpolations, Newton proceeded by solving a set of linear equations.  
Note that once the table of divided differences is made, only one value from each 
column is needed in order to construct the polynomial.  Newton discussed a variety of 
strategies for using either the lead differences or a set of central differences, depending 
on the nature of the data involved (Newton, 1967b; Fraser, 1927).   
 We shall make only one more observation here.  Consider the special case were 
the values of x are evenly spaced at unit intervals beginning with 0.  In this case all of 
the denominators in the ∆' column are 1, and all of the denominators in the ∆'2 column 
are 2, and so on.  In this case the each divided difference equals the ordinary finite 

difference divided by n factorial, i.e.  ∆'n = 
∆n
n!   .  In this case his fitted polynomial 

equation will come out as: 
 

(19)  y = α + x ∆1+ 
x(x-1)∆2

2!   + 
x(x-1)(x-2)∆3

3!   + 
x(x-1)(x-2)(x-3)∆4

4!    ..... 
 
Newton did not write his polynomials in exactly this algebraic form (19), but instead 
described in detail procedures for how to work from a table of differences.  His 
procedures do imply this form (Fraser, 1927).  Looking at (19) one can see both the 
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general form of the binomial coefficients and the form of the Taylor series.  Taylor took 
his inspiration from Newton and wrote his derivations based upon difference tables in 
1715 (Callinger, 1982, p.419).   
 
Appendix 3 Euler and the Exponential Base 'e'  
 In the next generation after Newton, Euler made extensive use of Newton's 
generalized binomial expansions greatly extending their range and utility.  Newton 
used tables to construct infinite series, but once the method of formation of this series 
had been made clear Euler began using the series to construct tables.  Euler conducted a 
lengthy series of investigations concerning the questions of which form of binomial 
expansions are most efficient for the construction of particular tables.  From these 
investigations comes the modern notion of function and most of its attendant notation. 
 Euler's notations are familiar to us because during the eighteenth century he 
wrote a series of extremely influential textbooks which greatly standardized 
mathematical notation.  Although the form and notation of Euler has been retained in 
our modern curriculum, much of the content and spirit of investigation has been lost.  
Euler believed strongly in empirical methods and this spirit pervades his famous 
precalculus text of 1748, the Introductio in Analysin Infinitorum  (Euler, 1988).  He felt 
strongly that the expansion of functions in infinte series is one of the basic tools of 
precalculus. 
 Binomial expansions expose many of the most important properties of functions 
as well as the connections between different functions.  Euler was the first person to 
calculate the number 'e' and show exactly how the hyperbolic area function is a 
logarithm.  This is accomplished entirely using Newton's binomial expansions.  
Following this Euler extends the binomial series to complex numbers and expands the 
trigonometric functions.  By looking at these series (what we now call the Taylor series 
for ex, sin(x), and cos(x)) Euler discusses the connections which allow him to see these 
function as one family.  The main content of Euler's work which is lost in our modern 
curriculum, is that by using empirical methods and binomial expansions all of these 
topics can be investigated at an elementary precalculus level.           
 Let us look at Euler's treatment of exponential functions.  In Chapter VI of the 
Introductio,  he presents the usual population and compound interest problems.  
However, he goes on in Chapter VII to derive several series for computing these 
functions.  Consider the function ax for a>1.  Since a0=1, Euler lets aw=1+kw, where "w 
is an infinitely small number."  Here he is approximating ax with a linear function on a 
small interval.  k is the slope of the curve ax at the point (0,1).  The value of the constant 
k depends on the base a.  (For example, if a=10, then k=2.30258.....)   Now Euler expands  
awj = (1+kw)j , using the binomial theorem just as Newton would. 
 

(20)  awj= (1+kw)j =  1+ j
1  kw +  j(j-1)

1.2   k2w2 +  j(j-1)(j-2)
1.2.3   k3w3 +   . . . 

 

Next he makes the substitution x=wj, or  j = x
w  , or  w = xj   , noting here that since w is 

"infinitely small" we are now supposing that j is "infinitely large".  (20) now becomes: 
 

(21)   ax =(1+k
j   x)j = 1 + 11  kx + 1

.(j-1)
1.(2j)   k2x2 + 1

.(j-1)(j-2)
1.(2j)(3j)   k3x3+. . . . 
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 Now Euler points out that since j is infinitely large,  j-1j   = 1,  
j-2
j   =1,  j-3j   =1, etc.   Hence  j-12j   = 12  ,   j-23j   = 13  ,  etc.   This conclusion is an intuitive use 

of limits that is quite similar to the way Wallis drew his conclusions about characteristic 
ratio.   Now (21) becomes: 
 

(22)    ax = 1 + k1  x + k2

1.2  x2 + k3

1.2.3  x3 + k4

1.2.3.4  x4 + . . . . 
 
Letting x=1, (22) expresses the relationship between a (the base) and k (the slope). 
 

(23)     a = 1 +  k1   +  k
2

1.2   +  k3

1.2.3   +  k4

1.2.3.4   + . . . . 
 
 Euler defines the number e as the base corresponding to the value of k=1.  (22) 
now becomes: 
 

(24)      ex = 1 +  x1   +  x2

1.2   +  x3

1.2.3   +  x4

1.2.3.4  + . . . . 
 
Using (23) he computes the value of the base e. 
 
 e = 2.71828182845904523536028 . . . . 
 
Looking back at the first part of (21) with k=1, we see the familiar statement that 

e
x
= 1+

x

j

!
"#

$
%&

j

, or in modern terms ex = j!"
lim

1+
x

j

#
$%

&
'(

j

. 

 Chapter VII of the Introductio also includes series that compute the inverses of 
(22) and (23).  That is to say logarithmic series are demonstrated as well as a direct 
method for computing k given the value of the base a.  Many examples are shown, with 
much discussion of their relative efficiency for actual calculation. 
 Unlike many mathematicians, Euler never tried to mask the possible pitfalls of 
his methods.  In Chapter VII he gives an example of how seemingly correct algebra can 
lead to paradoxical results.  The contradiction arises because an alternating series for a 
particular number actually diverges.  Euler's advice is to proceed and faith will return.  
That is to say his approach to mathematics was empirical.  Like Newton, he created 
equations by analogy and then tested them in various ways for to see if the results were 
consistent.  Formal proofs of the conditions for the convergence of these binomial series 
were not given until nearly a century later by Gauss. 
 Throughout the Introductio, Euler made free use of complex numbers as well as 
the infinitely large and small quantities seen in the above example.  He found that the 
series described above allowed him to extend the domain of ex and ln(x) to the complex 
numbers.  This ended a long controversy between Leibniz and Bernoulli concerning the 
appropriate definition of the ln(-1) (i.e. ln(-1)=iπ) (Cajori, 1913).  In order to use binomial 
expansions to directly create series for sin(x) and cos(x), complex numbers are essential.  
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The derivation begins by factoring the identity sin2(x)+cos2(x)=1 into 
[sin(x)+i.cos(x)].[sin(x)-i.cos(x)]=1 (see Euler, 1988, chapter XIII).  Euler then goes on to 
display the profound connections between trigonometric and exponential functions.  
Since the complex exponential maps vertical lines onto circles centered at zero, it 
becomes natural to write trig. functions as linear combinations of exponentials, i.e.  
 

  sin(x) =  e
ix - e-ix

2i    ,         cos(x) =  e
ix + e-ix

2    . 
 
Polar coordinates became very natural in this setting, and Euler makes extensive use of 
them in Book II of the Introductio . 
 An important point to consider here is that Wallis and Newton started with 
families of functions which through the use of extension, analogy, and interpolation 
gave rise to binomial series.  Euler started with binomial series expansions, and by 
extension and analogy united exponential and trigonometric functions in one family.  
This beautiful circle of empirical investigations can be carried out at an elementary level 
and forms the grounded activity upon which first calculus and then differential 
equations were built.    
 
Appendix 4: Negative Exponents and Ratios in Wallis 
 We have often found it interesting to examine some of the ideas in mathematics 
that did not gain general acceptance.  The serious consideration of these alternative 
conceptions can enlighten our thinking and our teaching practice as we try to 
understand student conceptions.  The following examination of Wallis' use of negative 
values within his theory of index and ratio is a good example. 
 Wallis interpreted negative numbers as exponents in the same way that we do.  
That is, he defined the index of  1/x  as -1, and the index of  1/x2   as -2, and so on.  He 
also extended this definition to fractions, for example  1/ x   has an index of -1/2.  He 
then claimed that the relationship between the index and the characteristic ratio is still 
valid for these negative indices.  That is, that if k is the index then 1/(k+1) is the ratio of 
the area under the curve (shaded) to the rectangle (see figure 5a).  In the case of a 
negative index this shaded area is unbounded.  This did not deter Wallis from 
generalizing his claim.       
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   Fig. 5a 
 

 When k= -1/2, the characteristic ratio should be  1/(-12   +1) = 2.  This value is 

indeed correct, for the unbounded area under the curve  y = 1/ x  , does converge to 
twice the area of the rectangle.  This is true no matter what right hand endpoint is 
chosen.  
 When k=-1, the characteristic ratio should be 1/(-1 +1)  = 1/0 = ∞ (Wallis 
introduced this symbol for infinity into mathematics).  Wallis accepted this ratio as 
reasonable since the area under the curve  y = 1/x , diverges.  This can be seen from the 

divergence of the harmonic series  1+ 12  + 13  + 14  + ....... = ∞ , which had been known 
since at least the fourteenth century (Boyer, 1968, Chap. XIV).  
 When k=-2, the characteristic ratio should be 1/(-2 + 1) = 1/-1.  Here Wallis' 
conception of ratio differs from our modern arithmetic of negative numbers.  He did not 
believe that 1/-1 = -1.  Instead he stayed with his epistemology of multiple 
representations.  Since the shaded area under the curve  
y = 1/x2 , is greater than the area under the curve y =1/x, he concluded that the ratio 
1/-1 is greater than infinity ("ratio plusquam infinita") (Nunn, 1909-1911, p. 355).  He 
went on to conclude that 1/-2 is even greater.  This explains the plural in the title of his 
treatise Arithmetica Infinitorum..  The appropriate translation would be The Arithmetic of 
Infinities  .   
 Most historians of mathematics quickly brush over this concept if they mention it 
at all.  Those who mention it quickly site the comments of the French mathematician 
Varignon (1654 - 1722), who pointed out that if the minus sign is dropped in the ratio 
then we arrive at the correct ratio of the unshaded area under the curve to the area of 
the rectangle.  This was an instance of the beginning of the idea that negative numbers 
could be viewed as complements or reversals of direction. 
 We, however, find it well worth pondering Wallis' original conception.  In what 
ways does it make sense to consider the ratio of a positive to a negative number as 
greater than infinity ?  In the area interpretation from figure 5a, we could view these 
different infinities as greater and greater rates of divergence.  Such views are often 
taken in mathematics.  The area under y=1/x3 does diverge faster than the area under 
y=1/x2.   
 Let's consider an even simpler situation.  If I have $1, and you have 50¢, then we 
say that I have twice as much money as you.  If I have $1, and you have 10¢ then we say 
that I have ten times as much money as you.  If I have $1, and you have nothing, then 
we could say that I have infinitely more money than you.  Many mathematicians would 
accept this statement.  Now if I have $1, and you are in debt; shouldn't we say that the 
ratio of my money to yours is even greater than infinity ?  This is a question that is 
worth pondering.  
 
Appendix 5: Newton's Area Calculations  
 How did Newton know that he could create an area expression by summing up 
the area for each of the separate terms in a binomial expansion?  He gave no reason at 
this point in the manuscript, but a reasonable reconstruction of thinking would most 
likely have been based on the area concepts of Calvalieri that are assumed in Wallis and 
in earlier manuscripts of Newton.  Each individual power has its own characteristic 
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ratio but a sum of different powers has no such constant ratio, hence the area 
contributed by each term in an expansion must be considered as a fraction of a separate 
rectangle in order to use the results about characteristic ratio.  Consider the total area 
under the curve  
y = axs + bxt , as the two separate pieces shown in figure 7a where the curve dividing 
the dark from the light area is y=axs.   

 
 Fig. 7a          Fig. 8a 
 
Leaving the darker area where it is we could now move each of the line segments that 
compose the lighter area up to the line y=k where k is the largest value of axs.  (Think of 
moving the lighter area as if it were a deck of cards.)  The lighter area will now fit inside 
a rectangle on top of the one that contains the darker area (see figure 8a).  The area of 
the bottom rectangle is axs+1, and the area of the top rectangle is bxt+1.  From Wallis we 

know that the dark area is 1
s+1  of the bottom rectangle and the lighter area is 1

t+1  of the 

top rectangle, and hence the total area is axs+1
s+1   + bxt+1

t+1  .  
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